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ABSTRACT

This report presents the flexibility matrix method of structural analysis in
detail. The method is extended to permit analysis of complex systems which con-~
sist of statically indeterminate component structures, connected to each other so
that some of the connecting forces are redundant.

Digital program 64D017 implements the theory bresented in this report and
can be used for analysis of any complex structure.
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SECTION I - INTRODUCTION

The structures of aerospace vehicles, of which the Saturn is a prime example,
are often large and usually statically indeterminate. Those structures which can |
be idealized by an assemblage of one or two dimensional elements may be analysed
by either the flexibility matrix method or the stiffness matrix method. Because of
the large number of elements and the relatively small number of redundant forces
in vehicles of the Saturn type, the flexibility matrix method is preferred. Also,
the numerical problem of inverting large matrices is eliminated.

This report develops a method of obtaining the flexibility matrix of such
structures by elastically coupling redundant component structures into a complex
structure. Although this concept is not novel(l' 2), it is felt that the detailed ideas
which make this method practical have not been sufficiently explained. Therefore,
the method is rederived and particular attention is given to definitive statements
regarding the nature and method of calculating the internal force influence matrices
which are obtainable from equilibrium conditions, and which transform external
unit applied loads or redundants into forces on the component structures or into
internal forces on their structural elements. This includes axis transformation
for elements in three dimensional space and an organized method that categorizes
the various force influences, so that the force influence matrices that are the
"coupling" matrices are easily understandable and calculable. This latter method
is given in Section III, "Statically Indeterminate Coupling of Redundant Components
of a Complex Structure." The practical application of the method makes the use of
digital computers mandatory to perform the various matrix operations. The input
data is in the form of the force influence matrices and flexibility matrices of stand-
ard structural elements. Novel idealizations are often possible which yield flexi-
bility matrices that allow superior representations of the compatibility or equi-
librium conditions where structure eler-ents join. Therefore, the method is set
up in such a way that any new element force and flexibility matrices can be used
as they are calculated, without having to modify the basic digital program.

The redundant - internal force - and deflection influence coefficient matrices
are derived, using the equality of internal and external work of deformation.
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A procedure suggests itself which will permit the build up of the matrices of
extremely complex structures from solutions of statically indeterminate struct-
ural subdivisions of reasonable complexity, requiring only the inversion of small
matrices and various elementary matrix operations. The matrices involved are
flexibility matrices of the simplest structural elements comprising the components,
and internal force influence matrices.

The method is implemented by Digital Program No. 64D017. Instructions
for its use will be given in a supplementary report. However, a sample problem is
given in this report which illustrates the application of the theory.
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SECTION I - FLEXIBILITY OF STRUCTURAL ELEMENTS

A. THE BEAM ELEMENT FLEXIBILITY MATRIX

The cantilevered beam element with two axes of cross-sectional symmetry
is assumed to be the smallest basic element of that part of a structural network
consisting of beams. The static deflection response of such an element to unit
forces applied at its free end is expressed by its flexibility matrix, which is the
matrix of coefficients [7 lm] of the generalized forces in the expression of

the deflections:

[2m] {%a} = {8}

The calculation of the elements of [‘YIm ] is based both on the Principle
of Virtual Work and the assumption that the internal stresses and strains are
linearly dependent, on the basis of the engineering beam theory.

4
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Figure A-1. Beam - Rod Element
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Figure A-1 shows a beam element @ - @ fixed at its origin and free
at point @ . The coordinate system coincides with the axes of symmetry. The
- 8ix degrees of freedom of point @ corresponds to the six components of Fm
shown in the figure. Thus
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where A = deflections
A = rotations
F = forces
F’ = moments

The cross-section properties at any point along the length of the beam

are:

R P

effective shear area loaded by Fu

effective axial area loaded by Fv

effective shear area loaded by F,

moment of inertia about the u axis

torsional moment of inertia about the v axis
moment of inertia about the w axis
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The non-zero elements of [-'y im ]are:

L 2
- - 1
uu f i)

0
L
y =f ds
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L
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Yow \E_ *Ga_ /9
0 u w

L
_ _ sds
Yaw T Ywu’ __/- EI
0 u

L
y o1 ___-/- ds
uu EIu
0

All other elements are zero.

Since practicality is of prime importance, it is recommended that the
indicated integrations be performed by assuming that the elastic properties vary
linearly between each pair of given numbers of point on each beam segment. The
expanded form of Eq. (A.1) is thus
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B. THE ROD ELEMENT FLEXIBILITY MATRIX

A rod has only one degree of freedom, that of elongation of one end with
respect to the other. If the beam element of Figure (A-1) is considered with
only that degree of freedom, i.e., Ay , then the flexibility of the rod is yyy.
Thus

Y

vv v

F =4
L
where Yvv = f Eis
0 v

However, in the case of interaction of rods and shear panels, it is important
to include the deflection of the rod due to unit value of an applied constant shear flow
(Figure A-2).

A.2)

- Lt - >

q=1 @

Figure A-2. Rod with Constant Shear Flow

@ SOONNONN

The value of the deflection due to unit shear flow, where the subscript v*

applies to the shear flow, is

L
Yy = sds (A.3)
vv f EA,
0
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Maxwell's Law of Reciprocity requires the existence of the term Yo'y = Yyv™
This is a generalized deformation due to the application of a unit end load, or other-
wise interpreted, it is the work done by the unit shear flow as it displaces through
deformations caused by the unit end load.

The corresponding diagonal term, p AR is obtained by considering the
applied load to be a unit shear flow and calculating the virtual work caused by that

load.
L 2
_ 8 ds
'yvlvl —;/‘ _"'E A (A. 4)
0 v

This is the work done by the unit shear flow as it moves through the deform-

ation caused by it.

Thus
- Y 'y..ﬂ
['y | o= nou (A.5)
rod . Y. #. AN .
ii 11
where
i = u vorw

C. THE SHEAR PANEL FLEXIBILITY MATRIX

Some two dimensional elements in the form of skin panels or beam webs can
be assumed to carry only pure constant shear flow (Figure A-3).
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Figure A-3. Shear Panel



The shearing deformatipn for a unit shear flow is given by:

Y = & (A.6)

If the panel has a rhomboid shape (Figure A-4), the skewed coordinates demand
adjustment in this value according to the theory of elasticity,

e,

Figure A-4. Rhomboid Shear Panel

The flexibility is thereby increased and the value of the shearing deformation is then

ab G 2
7qq = G (1+ § cot D) (A.T)
where E = Young's modulus
-G = shear modulus
<] = angle of midline with respect to the side of the panel

The complementary strain energy is thus

_ 1 2
U* 2 Yqq 9

D. FLEXIBILITY MATRICES OF ELEMENTS OF OTHER SHAPES

The flexibilities of rod and beam elements with various simple variations of
cross section properties are given in Reference 3. The trapezoidal quadrilateral
shear panel flexibilities are usually approximated by assuming equilibrium to be
satisfied by suitably adjusted uniform shear flows on the edges.

Some of these approximations also appear in Reference 3. However, if a
trapezoid is swept, similar to a tThomboid shape shear panel, the effect of this
sweep must be incorporated by increasing the flexibilities, through the factor C,
involving E, G and the average angle of sweep &:

c = (1+43cot’®)
9



SECTION II - STATICALLY INDETERMINATE COUPLING OF REDUNDANT
COMPONENTS OF A COMPLEX STRUCTURE

In previous consideration of the analysis of statically indeterminate structures
(3) internal forces were calculated which were caused by externally applied forces
and redundants, respectively, on the cut (and thus statically determinate) structure.
The concepts used are extended to the calculation of influence coefficients of complex
structures consisting of statically indeterminate component structures, coupled so
that redundant forces exist at the boundaries between the component structures.

A. ANALYSIS OF COMPONENT STRUCTURES

1. Basic Concepts for Solution of Component Structures

The structure is assumed to consist of interconnected elements in which
the internal forces are statically determinate when sufficient cuts are made to remove
redundancies (Figure A-5). Their individual idealizations permit the calculation of
flexibility influence coefficients. These influence coefficients are used to calculate
the deformations of the elements caused by applied loads. Linear structural bebavior
is assumed, permitting application of the superposition principle.

i

Figure A-5. Removal of Redundancies Through the Use of Cuts
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Each element admits only a limited number of forces and corresponding
kinematic motions. Examples are the slope and deflection of one end of a canti-
lever with respect to the fixed end caused by unit moments and shears. The deform-
ation of the elements, with respe::t to their individual datums, are easily calculated
by multiplying the matrices of the influence coefficients [ ¥ ] of each of the elements
by the force vector representing the forces { F } sustained by it. These forces are
due to external loads acting on the element or the internal forces due to load transfer
between elements in the cut structure. The latter (e.g., shears and bending moments
in a beam), can be determined of course from equations of static equilibrium of the
structure that has been cut at all points of redundancy so that these internal forces
are expressible in terms of the applied and redundant forces. The contributions to
the internal forces from these two sources are expressed separately by the matrices
(o ,]and [_qu]. The elements [@_, ]are the internal forces at m due to a '
unit load applied at h. Thus, when [%h] is multiplied by the external forces {Ph .
the resulting values are the internal forces { F mh} at interconnection points or load-
ing points m. Thus,

{Fan} = [mni{Pa} (A.8)

Similarly, there are the internal forces {Fm q} caused by the redundants { X q} .
The columns of the matrix [ 8 m q] are the internal forces at m due to unit values

of the redundants {Xq} at q. Therefore,
(e = [ua )] o

The total internal force is

{Fn} f{an}+{qu} (A- 10)
(a} = [omn | b {32} am

A propped cantilever béam,loaded at two points, is shown in Figure
A-6. The beam is broken up into two elements and a cut is made between the
beam and the flexible support. The internal shears Vi and Vo the moment m,, and
the support force p are the forces transformed through Qn and 8 mq shown below.

or

11
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Figure A-6. Internal Forces in a Redundant Beam

Methods for finding {Xq} , and thus { Fm} , will now be obtained by
considering the equality of the intemal and external work of the structural deform-
ations, i

2, Internal Work
The internal work of the structure is obtained by summing the contrib-
utions of each element to that work. Only the work of the internal and external
forces in and on an element relative to the element datum will be used to find the

12



internal work. Actually, the absolute displacements, which are the sum of the
datum and the relative displacements, could be used to find the work but the
contribution of rigid body motion is zero because the complete force system on
each element, including the reactions at its datum, is in equilibrium and the work
required for a rigid body displacement of a system of forces in equilibrium is

equal to zero.
The deflections of an element relative to its datum are

(&) ] {mad  am

It is to be understood that, physically, £ and m may represent the same or
different degrees of freedom; £ can be a deflection or a rotation type deformation

and m can be a linear or a moment type force.
The structure is assumed fo behave linearly and therefore the internal

work W el’ the product of these forces and the deflections, is given by

-3 {Fm}T {Az} (A.13)

Substituting Eqs. (A.11) and (A. 12) into (A. 13)
_ (A.14)
1, ] [x -_31 [Yem ] [amh]:fﬁ [fi’.

(el) L 1

The total internal work in the structure is the sum of the work contrib-
utions of the elements: '

Wiy = Z Wel (A.15)
=1 '

where
n = number of elements

13
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Now { iy.} will be common to all expressions of internal work for

all structural elements such as Eq. (A.14), provided [ omh] and [Bm q] are.
organized to have columns corresponding to every Ph and Xq sustained by the

- structure, even if some of these forces have zero influence. The sum of the

internal works, Eq. (A.15), is obtained by providing enough rows mﬁ:oinh]: (B mq ]]
and [‘y‘m] so that all internal forces in the component structure and their flexi-

bilities are represented.
The deflections of a structure consisting of two elements would be:

[ ] [ 1l ] {%}

—~r—
>
o
—_—
]

' P
{Az}. - [‘Y‘m ]1+1 [ oty J 5 [qu ! ]i+1{-i2-}
or

["mh] [qu]

" | ——.—q_"_p—_—-—-,__,

[amh ]i-u-'l [ﬁ ]i+1

Note that the elements in the i ith set of rows of [« mh] must therefore
be the values of the internal forces in the ith element due to unit values of external
loads { P, } applied anywhere on the cut, statically determinate structure. The
elements in the ith set of rows of [B ] are similarly the internal forces in the
ith clement due to unit values of the redundants {X }.

The internal work is one half the product of the internal forces and the
deflections. This work in two elements is:

Wint = Ve, * Ve,
= % [F TAmi * FmT Am ] 4. 11
T
[0Sl }1{--}
14



T TI [th] ‘[amh]ul
[{F } {F }J [{ } {x} ]EA-B—;—FEB:.]—T— (A.18)’

Thus, for two elements,

~ - - |7
T | T I J
l %h | ®mh, [(Y2m,| © ||%mb,!Pmq, || Pn
w1 [T x 7] — e (2 | T
mt =2 I'h | “q T | T | T -
B qu 0 Ysm, || %mh ]p-mq q
A N s =72 g T2
(A.19)

in which various brackets and braces of the notation in (A. 18) have been deleted for
clarity. Each of the letter symbols now stands for the corresponding matrix.
» Generalizing this to any number of elements, the total internal work is:

Wint =% [PhT E qu] _nl-hi: %} [amh i B mq] 3 —} (A.20) .

which has the same form as Eq. (A.14), but gives the generalized expression of
internal work for the whole structure through the foregoing definitions of [&_, ]
and[ﬁ ] and by designating [ Yim ] to be a square, symmetrical matrix whose
elements are uncoupled flexibility matrices of the elements along the diagonal, such
as that in Eq. (A.19) above.

3. External Work

The external work is expressed by summing the work of the external
forces as they move through their displacements. It will be helpful to use the
trick of "adding zero™ in the derivation of the expression of the equality of internal
and external work, so that terms involving the redundants in the accompanying matric

~ equations may be understood,

15



The concept of an external force can be generalized to include the
redundants which are applied to each side of a "cut" face, equal and opposite to
each other. Compatibility of the cut faces requires that each side of the cut face
move thmugh the same absolute displacement. The external work of the redundants
is therefore equal to zero because they are each equal and opposite forces, represent-
ing a zero vector, moving through some displacement with respect to an absolute
datum. Addition of the "external work" of the redundants to the total external work
is therefore adding zero.

The cut points and others which are loaded with external known forces
also move because of the influence of the loads on them and the forcing of compati-
bility by the redundants. Then if the structure is cut so that all forces within it are
statically determinate with respect to externally applied forces and the redundants,
the resulting deflections are expressed through means of a flexibility matrix [ ¢ ]
referred to some common absolute datum for the structure. It is desired to obtain
the displacements at the externally loaded points with respect to this datum. They
are calculated from an equation, such as

{As}| - [oa i“gq]{’fp}} (A.21)

in which {Ag} are the deflections of the externally loaded points, g, and [ ¢ ]is

the flexibility matrix of the cut, statically determinate structure. The subscripts
g and h pertain to applied loads or corresponding degrees of freedom at their points
of application, and p and q pertain to redundants or the corresponding degrees of
freedom at their points of application. Thus the partitions ¢ h and Ceq of [c] are

“the g deformations due to unit values of forces Ph and Xq, respectively.

Consider the displacements {A of one of the two faces of each cut.
(a)
They can be similarly expressed as:

h
{ag}, = [ i<ml e ®
for the faces (a). For the faces (b) they would be:
| Pn
{5 }(b, “ [ % EN ®)

16




The relative deformations of (a) and (b) are the differences. Thus

{Ap} = {Ap} - {Ap}

(a) (b)
The relative displacements of the cut faces can be expressed, as was done for

the load point displacements, as
[c l c ] ‘I”'h- (A. 22)
phj “paJ | X,

{a,}
[cph] = [c’ph] - [c’ph]
[cpq] = [c’pq] - [c'pq_]‘

which shows the use of the primed and double primed matrices of Eqs. (a) .and ().

in which

The total work of the forces is given by the sum of the products of the a
forces and their displacements. Remembering that {Ap }is defined as the relative
displacement vector of the cut faces, then the total external work ( if [Ap } were not

equal to zero) is

W 1{m) o)+ (=) {a,}]

. %[’{Ph}"’i{xqfl{'gﬁ} .

Substituting Eq. (A.21) and (A. 22) in Eq. (A.23) gives
P
. gh| ga h
w = Ix ——t=— (=) U
ext 2 [ ][ phl qul{ q}
]

17



Now, recalling the expression of internal work, Eq. (A.20), and
setting

there results, as shown in Appendix A:

T
a o Cegh | S :
--:n;— 74\m [amh:ﬁmq] = -—g-l:-}—g?- 4.29
A mq \ “ph :cpq

A means of calculating [ ¢ ] has thus been found. The values of the
redundants and the deformations of the compatible structure remain to be found.
The internal forces can be obtained from Eq. (A. 11) once the redundants are known.

It can be seen from Eq. (A.21) that if all the values of {xq} for every
separate application of a unit external load at point h were known, then the values
of {Ag} for any such unit load would form, by definition, one column of the external
flexibility influence coefficient matrix, i.e., that the resulting deflections are caused
by a unit force applied to the structure at h, and in which compatibility is enforced
by corresponding values of {Xq} .

To find these values of {xq} , the relative deformations {Ap} in Eq. _
(A.22) are set equal to zero, i.e., for compatibility of the cuts:

{8,} =0
[om ] {Pa} + [ J{x} =0
{Xq} - "["pq]“1 [cph]_ {Ph} (A. 26)

Then

Therefore

18
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(g) as:

Thus

Substituting this result in Eq. (A. 21), gives the deflections of points

{A }=[e gh ]{‘—} . (A.21)
Log { o] {-:: "e;»:}

{Az} - [°sh° %1 %pa ph] {= } (A.27)

- ["gh] = [°gh'°sq°pq-1 °ph] *-2)

{ag} = [r@l{m} (A 212)

which shows that ["gh] , according to definition is the flexibility influence
coefficient matrix of the redundant structure with respect to its own datum.

The internal forces {F_ } can be calculated for unit values of the

applied forces {P. } The result is the internal force influence matrix [fmh]
Substituting{x ]oqu (A. 26) into Eq. (A.11),

Let

- i
{Fm} = _amh:ﬁmq - -:i-—c-—P—_

{Fm} = :amh'ﬂmq "’pq-1 cph] {Ph} . (A.?S)

[ ] [amh'ﬂmq °pq

19 .
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which defines [ fmh ] as the internal force influence matrix of the uncut redundant
structure.

4. Summary

Due to loads at points (h):
The redundants are

O - [ol [l {md sm
The internal forces are

{Fm} = [amh - pmq cpq-1 cplx:] {P } (A.31)
The deflections are )

{Ag} = [cgh - e cpq‘1 cph] {r,} (A.32)

It should be kept in mind that for certain structures consisting of
many elements joining in few points it may be advantageous to obtain [ Ygh ]
by inverting the stiffness matrix of the structure, which in such cases may
be more easily obtainable (References 4 and 5).

20




B. ANALYSIS OF A STRUCTURAL COMPLEX

The method of solving statically indeterminate structures has been
summarized previously in Eqs. (A.30) through (A.32). The method can now
be extended to cover a class of structures that consist of statically indeterminate
modules interconnected in a statically indeterminate way. It is proposed that
through such a concept any extremely large structural complex can be solved
by analyzing the properties of component structures, chosen at convenience,
which may themselves be statically indeterminate, and coupling them through
the satisfaction of equilibrium and compatibility conditions at their points of
physical interconnection. The generalized relationships which lead to the
expression of the interconnecting matrices will be developed, and as will be
seen, the concepts that were used to develop Egs. (A.30) through (A.32) are
also applicable here. Furthermore, although this may be an extreme
generalization, it can be seen that the properties of the statically indeterminate
component structures may themselves have been obtained from a further break-
down into statically indeterminate sub-modules and a subsequent synthesis of the
component structure through the compatible interconnection of these sub-modules.
This can be continued ad infinitum, conceptually producing the picture-within-a-
picture-within-a-picture effect.

The method will be developed assuming statically indeterminate com-
ponent structures, interconnected in a statically indeterminate manner. It will
subsequently be shown what the specialized terms of the various matrices are
for structures that have component structures and interconnections that are

statically determinate.

1. Forces on the Component Structure

" The above title suggests that the forces on component structures might
have dxfferent sources. This is indeed true. The correct generation of the
corresponding force influence matrices is dependent upon the proper classification
of the force sources and their effects. They are so-called "extractor" matrices,(s)
because they extract the local force from the generalized loading matrix. These
matrices are generated from the equations of static equilibrium, somewhat

21




similarly to the calculation of o mh and qu for the elements of the component )
structure. It is the use of these force influence matrices that distinguishes this
approach from that of Argyris, ©) in which the internal element forces of the
connected component structure are used to obtain the work in the components of

the complex structure. The use of the new statically obtainable force influence
matrices is obviously much simpler to understand as well as to actually implement.

A datum is chosen for each component structure so that the reactions
there are statically determinate. At these points, each component structure is
joined to another one. All other points on the component represent points where
arbitrary loads can be directly introduced. Quantities at these points are
designated by the subscript g where g designates the degree of freedom at
a point, e.g., a rotation or deflection, and i stands for the interior nature of
the point, it being within the boundary of the component or on the boundary,
but not connected to other structures there. The forces which correspond to
the senses of these degrees of freedom are subscripted with hi' For example,
the pumerical designation in an actual analysis of the deformation g;» which B
may be a rotation, would be the same -as that of the moment hi if it were applied
in the same location.

Load Points

Figure A-7. Typical Load Points B; 11i on Component Structure

The points which represent the statically determinate connection of
other component structures (i.e., their datums) to the presently considered
structure are called g,. At these points the negative of the reactions of the
other components to external loads applied at any point k are introduced (Fig-

-ure A-8). The subscript b stands for boundary between component structures.

At such points, external forces Ph’b may be applied with the same sense as the

corresponding deformational degrees of freedom there.
22
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Reaction forces |
for Structure B

Figure A-8. Typical Load Points &

The third type of point is that at which the statically indeterminate
coupling forces are introduced. ’mesearecalledgt(FignreA;-s). These points
may be externally loaded, which loads are designated Ph" )

ot

Figure A-9. Redundant Connection of Two Stnwmrei



In summary, the point nomenclature is as follows: '

Pertains to deformation dégree of freedom g at

g =
i(c) a point within or on boundary of the structure
designated (c).
g, = Pertains to deformation degree of freedom at

©) points of statically determinate connection of (c)
with other component structures, datum of (c)
excluded,

g = Pertains to deformation degrees of freedom at
(©) points of connecting redundant application on
structure (c). '

Similarily, the corresponding force nomenclature substitutes h for g

in the subscripts, other items being held equal so that hi . hb , ht pertain
) © @ .
to forces corresponding in sense and location to their deformation counterpart

atg. , and » respectively.
i * & &
© “(© ()
It should be noted that the symmetry of the influence coefficient matrix
[‘th] (Eq. A.28) actually shows that g and h can be used interchangeably..

. Having dealt with the force and deformation designations for a com-
ponent structure, it will now be important to find a nomenclature for the general
degrees of freedom and corresponding forces applied anywhere on a complex
assembly of component structures. The reason is that we want to describe the
response of the complex structure to applied forces in the same way as the re~
sponse of the component structure was described. This istosay, it is desirable to
talk about the degrees of freedom of points that are externally loaded and the degrees
of freedom of redundant interconnections separately. Therefore, the following
definitions are given

a. Deformation Designations of the Complex §tmcmlwe

The following subscripts describe the nature of subscripted

~ quantities:

n = Pertains to generalized deformation degrees of
freedom anywhere on the complex structure, ex-
ternally loaded or at which flexibility influence,
coefficients are required. They include those

24



designated hi and h'b on the component structures.

Excluded are those which correspond to redundants
existing at the boundaries between component struc-
tures. :

8 = Pertains to deformation degrees of freedom of the
points at the redundant cuts existing between com-
ponent structures. These degrees of freedom have
a subclass, designated by s " which are those of the

cut points externally loaded by forces of the same
sense and location as the corresponding degree of
freedom, or at which flexibility influence coeffi-
cients are desired.

b. yocda on the Complex Structure

k,t = Pertains to forces corresponding in sense and location
to their deformation counterparts n and s, respectively.
This means that the forces designated by k are ex-
ternal forces and those designated by t are the re-
dundants. The forces designated by tp, corresponding

to sp, are externally applied at the location of inter-

connecting redundants with the sense of the correspond-
ing degree of freedom. Their positive direction is

the same as that for all other externally applied loads
which have the same sense.

Using these definitions, a transformation matrix can be con-
structed which will express the forces applied to a component structure in terms
of the forces applied to the complex structure.

The loads Ph on the structure of Figure A-2 due to forces at i
i !

the general points are expressed through the transformation matrix [ah k:l as }
i !

o} =[] {2

where h, are points on the component structure and k are all the points on the com-
plex structure where forces are applied, or for which influence coefficients are to

be computed.




c. Nlustrative Example of [ahik]

The loads on the boundary, directly applied, for the structure I
of Figure A-10 are described by the matrix [ahk] in terms of the loads {Pk}.
"

which is the complete load matrix for the complex structure.

wl)

Figure A-10. Structure Loaded by Forces at hi

k
lkl1 2 3 4 11:1
d - 30285 8T ¢ {mde{ 2
Py

so that {Phi}l = [‘hik]l {»}

Thus
P13[0010.’]
P, 00 01
: I

PR
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For the structure II of Figure A-10:

Kk

bN\J1 2 3 4

_ 1]fiooo
[‘hgs] 20100]-

Thus

CY

P 1

1 _Boooapz
p,( "l 10 ol{ 2

I 3

P,
\ J

Collectively we can thus write

{Phi} ) r[ahik]lq b
e

The forces Phb have three possible sources as illustrated in
Figure A-11, First, there are the reaction forces at hb due to unit values of

forces anywhere at k which form the matrix [‘hbk] . Next, there are reaction
forces at hb due to unit values of forces of type t ~ These are given by [ahbtp].
The third contribution to Phy, is the set of reaction forces at hb due to unit values of

redundants at t. The matrix expressing these relations is [bhbt]' The loads
on the structures from these three sources are the sum of their influences:

7} - [[a,.bd; [oe 1 B J]
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COUPLED STRUCTURES

[o, ] {7}

Datum for Structure I

FORCES AT b.b DUE TO LOADS Pk
ON THE COUPLED STRUCTURE

o {5

FORCES AT b, DUE TO FORCES AT h, DUE TO
REDUNDANTS X, LOADS P,
P

A-11., Loads on hb Points of Coupled Component Structures
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Finally there are forces at ht due to forces Ph applied on one
e - —

side of the cut face that belongs to the presently considered component structure,
and those caused by unit values of the redundants between component structures.

The first are given by [a.h " ] [ P 1 and the second by [bh t] {X J» , as shown
tp L th "

in Figure A-12.

Figure A-12. Forces at h;Due to Api)lied Loads and Redundants

t t
ENys 7 B\ 56789
5 [[0 o 5 [[L0O0OO
[ 6 (|1 o 6 |]o 1000
-7 o 2 [bye] = 7 {[o0100
ahttp]l 8 |lo o htly g lfooo0o10
s llo o 9 |]oo o001

tp . ht
ENUs 7 t\| 5 6789
5 |[[0 o 5 [F1L 0000
6 (o o 6 ({0-1 00 0
[ape 1= 7 [0 o [bh]n= 7 [lo 0-1 0 0
o1 8 |0 0 ¢ 8 {00 0-1 0
s |lo o 9 [0 00 0-1
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In summarizing thése descriptions, the loads located at various
points of the complex structure, cut so that component structures are inter-
connected in a statically determinate manner, cause forces on any particular
component structure (¢) which can now be expressed in the matric equation

{h«)

|

.

? (A.33)




in which the [a] matrices are the forces caused by unit applied loads and [b]
are forces due to unit connecting redundants. More briefly stated:

a‘hik = Force on 11i point due to unit load at k.

v ahbk = ],-‘orceonhb point due to unit load at k.

ahbtp= Force on hb point due to unit load at tp.

ahttp= Forceathtpointduetounitloadon tp point.
hhbt = Fomeonhbpointduetounitconnectingredundantat t.

bhtt = Forceonhtpointdletounitconnectingrednndantat t.

Let the point designation be generalized so that

i

Location of n and sp points

—e
]

Location of k and tp points

that is, iand j designate all points where flexibility influence coefficients are
calculated so that, for example,

{Pj}={'§f' A.39)
P

Then we can let

k| 0]

Luds e 1 omg | A
A L
i ’ | ahtp~(c)
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and

-
By = (0]

[bht ] (c')" bhbt (A.36)

Oyt

o p—

Where h now stands for the points h,, hb' ht for which the flexibility matrix
ygh is known from the analysis of each component structures. Then the loads

on a particular component structure (c) are:

Phi '

P _ . L1 5 (A.37)
b= (R} - (o] "m](c){xt}

P
% 10

2. The Work of Component Structures

The development of a solution for component structures resulted in
a method for calculating the component structure flexibility matrix [th ] ()
according to Eq. (A.28). The matrix is initially calculated in the desired
arrangement or may be suitably rearranged, so that it is partitioned according
to the point categories h,, hb, 1% previously defined. Actually this is necessary
only for clarity of the derivation. Then the deflections relative to the components
datum are:

faky- A IRCAN
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or

| oY
A‘i ey : b, | Vg.b, Phi
-—— - -_.__'_. —— — — - o w—
oy = | e Tm ) A Ty as
— -__L_.__.]_ — ——
, A‘t © Yg.hy ' &by | "gh, g pht) ©
. ./ | -J(c)

The work in the component structure is

e =5 [ (%) o} {m T {8+ {7 o) ]
(A.39)

The work increment due to rigid body motion of the component struc-
ture as it displaces due to motion of its datum is zero because the applied forces
and the datum reactions are in equilibrium. Therefore, Eq. (A.39) gives one of
the components of the total work in the complex structure.

Substituting Eq. (A.37) in Eqs. (A.38) and (A.39), there obtains

Vi) 72 [ P‘; X‘J Fi.] © [)3‘] (c)‘[ahji l)”-5]«:) {’g—}

A.40)




in which

] -fd [ ]- Doufud”

3. The Work in the Complex Structure

The work in the complex structure is the sum of the works of the
components, as given by Eq. (A.40). Thus, for (N) component structures:

»

N

¥int = Z Yo

-
Y.
ghg)

7,
ghe)

%

gh(m

#nj

®nj

e

(o |
85,1 Pnt "

(1)}
bt )
[
L

@

™| "o
-

(A.41)

The external work of the complex is calculated as was done for the
individual component structure. Assume that a flexibility matrix [§] of the
complex structure exists. The deflections of the external points i are:

{a}- LY i b ] {’;‘f‘}

(A.42)

Similarly, the relative deflections of the cut points of statically

indeterminate interconnection are
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Then let the matrix

so that

oo }E)

A
With {A} = {‘Ei , it is obvious that
[}

e

[5 ] = :69 : Git_-
S| %t

(o} - J{}

The external work is

80

Now

Let
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A.43)

(A.44)



Substituting [A] and [B] in Eq. (A.41) and comparing with Eq. (A.44) shows

|
Ay T | 5. !5

Compatibility requires that the relative deformations {A s]‘ are equal to zero:

b)-[] B} fulmle w

{x}- [Gst] [°sJ]{P} (A.47)

Substituting {Xt} in Eq. (A.42) gives

{a} = [8y '%]{“"1—15;;]'} |

{4}- [511 -6, 6,7 °sj] {Pj} (A.48)

or

Let

[ ] = (05— 8 0]  ae

Then

{a}=[y] {7} .50

which shows that [‘yij] is, by definition, the flexibility influence coefficient
matrix of the complex redundant structure. ‘
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Let
. T
Ag = A
o T
Bsg-Bht

Then the components of [7ij] in Eq. (A.49) are obtained from Eq. (A.45) and
the substitution of the new terms for AT, BT. Thus

6y=[4g ) &g}: [Ahj]
o= (g 1[0 [2ae ]

b= [Bug ] 2] [P ]

C. SOLUTION SUMMARY

1. Complex Structure

a. c@meg Redundants
{xt} - [Gst] [st] {Pj} (A.47)

b. Forces Applied to Component Structures

Substitution of Eq. (A.47) in (A.37)
{Ph} = [AhJ ; Bht] [':;s:_’lf ;'_:I {Pj} (A.51)
8)
c. Displacements

{Ai} = ["ij] {Pj} | (A.50)
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2, Component Structure

Substituting {ph} of Eq. (A.51) in Egs. (A.30), (A.31), and
(A.32), all internal forces in the component structures can be obtained.

Let

or

__a -1
Xih = "~ %pq oh

(See Equation (A.so))v

Xy = - 5, " 6,y

(See Equation (A.47))

= [‘hj ~by B °sj]
= (o *he 5y ]

(See Equation (A.37), (A.47))

fon =[amh-ﬁchpq-1°ph:|.

fmh = [amh ¥ pmq th]

(See Equation (A.31))

(A.52)

(A.53)

(A.59)

(A.55)

Then combining Eqs. (A.52) and (A.54), we obtain component redundants due
to unit-applied loads as

4

= Zgn T

(A.56)



Similarly combining Eqs. (A.54) and (A.55) results in internal forces
due to unit applied loads

05 = Fmh T ‘ (A.57)

and one obtains the following simplified relationships for the component struc-
ture:
Component Structure Redundants

{xq} =[x qj] {pj} | (A.58)
(See Equations (A.30), (A.56))

Component Structure Internal Forces
{Fn}=[ns] {7} (459

(See Equations (A.31), (A.57))

Component Structure Deflections
{Ag} =[7gj] {Pj} | (A.60)

The deflection influence matrix [7gj] is obtained by choosing those
rows of [yij] for which i =g. The deflections could, of course, have been
obtained by choosing the appropriate values from the complex solution, i.e.,
from {Ai} , wherever i=g. Formally, the matrix [ygj] could be obtained
by multiplying ¥ gh by the unit load matrixtw . From Eq. (A.54),

(v~ (7] (]
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Eq. (A.58) in which

D. SPECIAL CASES

1.  Statically Determinate Coupling of Statically Indeterminate
Components

When no coupling redundants X, exist, [B] does not exist, as can
be seen by referring to Eq. (A.33). Following the development of Eq. (A.45)

it becomes obvious that only the matrix [aij] will remain which is given by

[0 ) = [21 ] T [ ] (A.61)

This matrix is also equal to the flexibility influence matrix’ [yij]ofmcha-

- [cij] = ["ij]

The redundants in each component structure are obtained from

ey 1 - [oan [ ]

["qh-J =" °pq B “ph

[ ] = oy )

(b o] [l (]} v
RENEY
[t [

fa}~ [rm o™ ][] (B}
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2, Statically Determinate Components

If the component structures are statically determinate, their influence
coefficient matrices ['y gh] are simply

[?‘h]s.n.c. =[a8£] [\"\tm] [“mh] (A. 64)

because qu does not exist. (S.D.C. means "statically determinate component".)
For the same reason, fmj] ‘= [amh] [fhj]' so that the internal forces are:

{Fm} = [amh] [fhj] {Pj} ‘ (A.65)

S.D.C.

In case these component structures are coupled statically determinately,
[fhj] = [ahj], as before, so that in this case

LS S Y I VI REY, (.50

3. Summary

The complete solution of a complex structure consisting of statically
indeterminate component structures that are attached to each other in a statically
indeterminate manner has been found and is summarized in Eqs. (A.47), (A.50),
(A.58) and (A.59). Equations (A.47) and (A.58) allow the calculation of the re-
dundants of the system in two stages, first the coupling redundants and subse-
quently the component structure redundants. Equation (A.50) gives the displace-
ments of the structure and Eq. (A.59) gives the internal forces in the elements
of each component structure. The maximum number of redundants at any stage
of the computations can be taylored to suit by providing as many or as few com-
ponent structures as necessary to limit the size of required inversions, as may
be seen from Eqs. (A.47) and (A.58). It can also be seen that the matrix [7 gh]
of each component structure can be obtained by treating it as a complex structure
consisting of sub-components, each of which may or may not be redundant, as the
configuration dictates.

Finally, several special relationships were given for the cases in which
the coupling of the components is statically determinate, or the components are
statically determinate, or both. The method presented has, therefore, great use-
fulness in those applications in which the complex structure is extremely large
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and can be clerically handled most easily by assigning a component to each of
several groups of personnel. Another advantage is that in a large system that
may contain several hundred redundants, it will be possible to break the analysis
physically into subdivisions so that no inversions of matrices larger than a size
for which good precision can be guaranteed will have to be performed.

Even if the structure is statically determinate, the method presented
will allow the calculation of the influence coefficient matrix of very large struc-
tures in easy stages, as was shown in the final Eqs. (A.64), (A.65) and (A.66)
dealing with this degenerate case. '
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SECTION IV - SAMPLE PROBLEM

The problem shown in Figure A-13 can be solved in the conventional way
by using the theory described in Section III A. This requires the use of three
redundants. The alternate coupling procedure is also shown in order to illus-
trate the use of the theory of Section III B.

STRUCTURE @
(f) (9)

NN

Y-
2 ) (3 5

- —a -

A
1
1
(n) sTrRucTuRE (T (&) ‘”I
3, 33—t 3 g—2 | —ote 3

Figure A-13. Problem kealization
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A. CONVENTIONAL MATRIC SOLUTION

Figure A-14 shows two cantilever beams which are fixed in opposite walls,
and a third beam which is simply supported at two points on each of these beams.
The loads are vertical concentrated forces. The illustration shows the beams
in the idealized cut, statically determinate configuration on which this analysis
would be based. All beams are assumed to be at the same level.

NS

/
- - /
A § —X2(q=2) §== X3(q =3} Q) é

I A T ¢

Figure A-14. "Cut" Structure for Conventional Analysis

The free bodies of the structural elements are shown in Figure A-15.

In the conventional analysis the structure is cut at three points, giving a
single set of three redundants. The methods of Section III A are applied to ob-

tain a solution.
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2.

lement Flexibility Matrices
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B._ SOLUTION THROUGH COUPLING OF COMPONENT STRUCTURES

This solution is obtained by applying the methods of Section III B.
Structure I is a once-redundant component structure. The assemblage of the
three component structures has statically determinate interconnection when
cuts are made at points 2 and 3. The coupling matrices [A]and [B]for the cut
structure of Figure A-16 are shown on page 51.

fe, (=R, )
(k=6)
7 (=R, )
(k=S) i
7
v - I - ; J’
/ A 2ix 0 (TG ae2) ‘
’ T
Ip. (=P, ) TP,‘, (=) ) IP"‘ (=R, ) 1’4("!';’
(k=4)

(ksi) (k=2) (k=3)

Figure A-16. Dlustrative Problem

The component internal force matrices are givén first:
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Component IIT
[ o]
o
mh I
Force h
Type mrIi oz . 2
4
vi 1 0 h=1 = E
vg 2 k=3 =
m 3 3 0
g
The Coupling Matrices [A] and [B]
(Refer to Fig. A-16) 'LAhj | [Bht]
Component | Point . k t
No. Type | J 1 2 3 4 1 2
Force ., X X
Type % I ! 2
2 1 1 T2 1
by, ! 1§ § 9 rﬁ' 3
I b, 2 0o 0 o0 o 1 0
hj 6 0 0 0 0 0 0
ht 2 0 1 0 0 1 0
I ht 3 0 o0 1 0 0 1
hj 4 0 0 0 1 0 0
h, 3 0 0 0 0 -1
= 5 L 2z 8 1 2
b, 3 3 9 | 3 3
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The Component Element Flexibility Matrices

These matrices correspond to the diagonal partitions of Yy With parti-
tioning between 6 and 7.and between 13 and 14, because the arrangement of £
and m indices corresponds to that of the components. Thus

5
5
- 4
[7lm]l _ 9 4.5
45 3
9]
1
3
8
s 2
_ 2 2
[”zm] = 9 4.5
I 4.5 3
9 4.5
i 45 3 |
B
45 3
52



APPENDIX A - PROOF OF EQUATION (A.25)

To prove:

LY !c T '
e e ] (] [ e

mq

From Eq. (A.20) and (A.24),

o] ] ) (] [;:;J o a1 62

c

Let 1 ;
H, 1 -
3= Ll [,ﬁm%;i} 2 (o} Aug ] =141
|

N ] =7
Then
[ [e][x] = [+7}[a™ra] 2]
Subtracting equal quantities from both sides:
7)o ta][a] -
but L0

therefore ¢ = dT'yd

" oT
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APPENDIX B - AXIS SYSTEM TRANSFORMATIONS OF FORCE
AND DEFORMATION VECTORS

Suppose a structural element to exist with orthogonal principal axes x”,
y”, 2", oriented arbitrarily with respect to a common Cartesian coordinate
system as shown in the following sketch. -

Arbitrary Location of Triple Prime Axis System with
Respect to Common X, y, z System

Let it be so oriented that the direction cosines of the x” axis are given by
L, m_, and n_, respectively, being the cosines of the angles between the x"axis
and the x, y,and z axes. Similarly Ly, m e and ny are the direction cosines of
the angles between the y” axis and the x, y, and z axes, respectively. The .
subscripts z refer to similar quantities pertaining to location of the z axis.
Thus it can easily be seen that the transformation of forces from one axis sys-
tem, x”, y”, z“ to the common Cartesizy system is obtained by the matrix

multiplication




[
Fx zx zy zz Fx"
=! m m m F"
y X y z y
~
Fz ny ny nz F‘z
- -

Forces and deformations which are alike in sense and direction transform
in the same way, through the previously shown direction cosine matrix, in which

we let

B L L 2
[T] = m_ my m,
nx ny nz

Methods for obtaining the direction cosines are straightforward and follow
from the calculation of unit vectors along chosen body axes. It can be shown
that this transformation matrix is orthonormal, so that its inverse is equal

to its transpose.

1t s 117

In order to ensure the orthogonality of the T vectors, the following
orthogonality conditions must be met:
4
I:et v, =( my 1 i=x, y, 2
By
Then z Vi vnj = 6‘3
n

where 6, =1; i=]
=0; i%]
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APPENDIX C - EXTERNAL TO LOCAL INTERNAL
FORCE TRANSFORMA TION '

1. Transformation from Common into Local Element Axis tem

In the calculation of the influence coefficient matrix of a complex struc-
ture it will be necessary to transform forces given in the common x, Y, 2
coordinate system into those acting along the principal axes of the element.
Suppose six forces are given at the end of the element shown in the following
sketch.

x
Prismatic Arbitrarily Located Element Sublgcted to End Fbroes |
~ Knowing |
qu Fx
Fy=d = [T ] ' Fy
F » Fz
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we arrange the forces which are in the body axis system into two triplets of
forces and moments. The resulting transformation yields the formula:

CEr) - (e )

77 4 o]

FI

{ X

: %

% ) =
(== ? = _ ]IL < ‘;: >

| F

| .

Fy- [] v [

2" _ J{

T is obtained as previously discussed.

where[ T

moment about x* axis

F'w
x
Fy’n = torque abouty’ axis

F;..' = moment about z” axis

Fx" = transverse shear in x" axis direction
Fy"' = axial force in y" axis direction
Fzm = shear force in z" axis direction

2. Transformation of Externally Applied Loads into Internal Element Forces

The forces at the ends of structural elements that are caused by exter-
nally applied loads anywhere on the complex structure must be calculated so
that the internal work in the elements can be calculated. The use of internal
work in the application of the principle of virtual work for the solution of com-
plex redundant structures was shown in Section III. The internal force influ-
ence matrices occur in two types. One is the matrix whose elements are the
element forces due to unit values of the applied loads; the other type gives the
element forces due to unit values of the redundants.
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The determination of these matrices obviously requires that the struc-
ture be cut until a stable, statically determinate structure remains. Then the
internal forces can be obtained from ‘the equations of static equilibrium, which
involve only the geometry.

The cutting should be done so that, if possible, the redundants will have
the least effect on the internal forces in the structure.

Let [az ] = Influence matrix giving internal forces due to unit values
of applied load

[B ]= Influence matrix giving internal forces due to unit values
of redundant forces acting simultanecusly on both sides of
one cut

Then the internal forces are:

Fg: i ag"h i Bg’q Ph
= r ———
Fg *gh } Ben %
where Ph = external forces ath
Xq = redundant forces at q
But
{re}- [=]" {=}
" Thus
~ | o | n
e [E17100 ] [oe | o | [
T T e T |5
g = ! i gh ; o} q




These are the desired internal forces in the principal axis system of the struc-
tural element. As an example, consider the force transformation for a rod

{Fz'} a [T]Trod [“sh g pm] {-;h- }

Fx

| Ph
e = [“sh E ng] -
F, Xa

and £, m, n are the direction cosines of the rod axis (y* ) with respect to the

X, ¥, Z system.
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